If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+2x^2=176
We move all terms to the left:
6x+2x^2-(176)=0
a = 2; b = 6; c = -176;
Δ = b2-4ac
Δ = 62-4·2·(-176)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-38}{2*2}=\frac{-44}{4} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+38}{2*2}=\frac{32}{4} =8 $
| 10e+28=-2(e+10) | | 10d-d=-13+31 | | 27=12x-3 | | 64x^2-4=12 | | 5c=–4+6c | | -9=k6 | | 6c+4(2-2c)=0 | | 12x+10=12x=10 | | -1+28x=55 | | 14=15x+2 | | 2(x+17)=-1 | | –19g+13g=18 | | 1/x=0.576 | | 13y+3=16 | | 20x-15=15x+40 | | 3(6 | | 3(6 | | -16=2x+8 | | 11g+-2g=-18 | | -9(2b+1)=27 | | 6x-2x+8=x5 | | 14x−(2x+11)=−13 | | 10x-7=117 | | 8=6+{a}{4} | | 0.5(x-6)=0.45(2x-12) | | -15h+16h=14 | | 29=74x+47 | | -18-3x=-11x-26 | | 4.5x(−5.26)= | | 6x+15=-3x-21 | | 32=62x+86 | | 13x+5+17x-19+8x+35=180 |